Constructive dimension equals Kolmogorov complexity
نویسنده
چکیده
We derive the coincidence of Lutz’s constructive dimension and Kolmogorov complexity for sets of infinite strings from Levin’s early result on the existence of an optimal left computable cylindrical semi-measure M via simple calculations.
منابع مشابه
Constructive Dimension and Hausdorff Dimension: The Case of Exact Dimension
The present paper generalises results by Lutz and Ryabko. We prove a martingale characterisation of exact Hausdorff dimension. On this base we introduce the notion of exact constructive dimension of (sets of) infinite strings. Furthermore, we generalise Ryabko’s result on the Hausdorff dimension of the set of strings having asymptotic Kolmogorov complexity ≤ α to the case of exact dimension. Th...
متن کاملScaled Dimension of Individual Strings
We define a new discrete version of scaled dimension and we find connections between the scaled dimension of a string and its Kolmogorov complexity and predictability. We give a new characterization of constructive scaled dimension by Kolmogorov complexity, and prove a new result about scaled dimension and prediction.
متن کاملA Correspondence Principle for Exact Constructive Dimension
Exact constructive dimension as a generalisation of Lutz’s [Lut00, Lut03] approach to constructive dimension was recently introduced in [Sta11]. It was shown that it is in the same way closely related to a priori complexity, a variant of Kolmogorov complexity, of infinite sequences as their constructive dimension is related to asymptotic Kolmogorov complexity. The aim of the present paper is to...
متن کاملA Kolmogorov complexity characterization of constructive Hausdorff dimension
Lutz [7] has recently developed a constructive version of Hausdorff dimension, using it to assign to every sequence A ∈ C a constructive dimension dim(A) ∈ [0,1]. Classical Hausdorff dimension [3] is an augmentation of Lebesgue measure, and in the same way constructive dimension augments Martin– Löf randomness. All Martin–Löf random sequences have constructive dimension 1, while in the case of ...
متن کاملThe Dimensions of Individual Strings and Sequences
A constructive version of Hausdorff dimension is developed using constructive supergales, which are betting strategies that generalize the constructive supermartingales used in the theory of individual random sequences. This constructive dimension is used to assign every individual (infinite, binary) sequence S a dimension, which is a real number dim(S) in the interval [0, 1]. Sequences that ar...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Inf. Process. Lett.
دوره 93 شماره
صفحات -
تاریخ انتشار 2005